Minimum Storage Regenerating Codes for Scalable Distributed Storage
نویسندگان
چکیده
منابع مشابه
Hybrid Regenerating Codes for Distributed Storage Systems
Distributed storage systems are mainly justified due to their ability to store data reliably over some unreliable nodes such that the system can have long term durability. Recently, regenerating codes are proposed to make a balance between the repair bandwidth and the storage capacity per node. This is achieved through using the notion of network coding approach. In this paper, a new variation ...
متن کاملSearching for Minimum Storage Regenerating Codes
Regenerating codes allow distributed storage systems to recover from the loss of a storage node while transmitting the minimum possible amount of data across the network. We present a systematic computer search for optimal systematic regenerating codes. To search the space of potential codes, we reduce the potential search space in several ways. We impose an additional symmetry condition on cod...
متن کاملDeterministic Regenerating Codes for Distributed Storage
It is well known that erasure coding can be used in storage systems to efficiently store data while protecting against failures. Conventionally, the design of erasure codes has focused on the tradeoff between redundancy and reliability; under this criterion, an Maximum Distance Separable (MDS) code is optimal. However, practical storage systems call for additional considerations. In particular,...
متن کاملExact Regenerating Codes for Distributed Storage
Erasure coding techniques are used to increase the reliability of distributed storage systems while minimizing storage overhead. The bandwidth required to repair the system after a node failure also plays a crucial role in the system performance. In [1] authors have shown that a tradeoff exists between storage and repair bandwidth. They also have introduced the scheme of regenerating codes whic...
متن کاملDistributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient
We consider a set up where a file of size M is stored in n distributed storage nodes, using an (n, k) minimum storage regenerating (MSR) code, i.e., a maximum distance separable (MDS) code that also allows efficient exactrepair of any failed node. The MDS property ensures that the original file can be reconstructed even if any n− k storage nodes fail. When a node fails, a new node collects data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2699232